Today : Stability of Closed-Loop System

HT K (s;6) G(s)
Control Systems | Question: For what controllers K is the closed-loop stable?
Stability
Nyquist cirterion: Simple method to determine if the closed-loop system will be
stable by looking at the open-loop Nyquist plot.
Colin Jones

- Can generate the open-loop Nyquist plot from system measurements without
Laboratoire d’Automatique doing any modeling

- Can easily define a range of stabilizing control gains

- Tells us how close the system is to unstable - will use to define the notion of
robustness next week

Stability - Example Stability - Example
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BIBO Stability

Bounded Input Bounded Output (BIBO)

- If the input signal is bounded energy, then the system will not cause the
output to have unbounded energy

A signal w(t) is said to be bounded if there exists a constant C such that |w(t)| < C
forallt >0

BIBO Stable System

A system is said to be BIBO stable, if the output signal is bounded for all bounded
input signals.

- Stability is a basic property that all closed-loop systems must have

- Note that a BIBO stable system does not guarantee that the system does
anything useful, only that it doesn’t explode!

- There are many more types of stability

Stability Condition
Stability via System Poles

An LTI system with transfer function G(s) is BIBO stable if and only if all its poles
are in the left half plane.

Transfer function

Fo(s—zi)  a L. CCny

iLols=pi)  s—m S — Pnyp

In the time-domain:
g(t) = cre’ + -+ ey et

We see that g(¢) is integrable only if Re(p;) < 0 for all 4.

Note: This idea extends to systems with poles at zero, and multiple poles.

Stability Condition

An LTI system is BIBO stable if its impulse response is absolutely integrable

| lawn <0

w0y = [ urlgtt=myir
= /:0 g(T)u(t — 7)dr

Assume bounded input u(t) < C
t
ly(t)| < / lg(T)u(t — 7)|dr

=0
t
<c / lg(7)|dr
=0

and we see that y is bounded if g is absolutely integrable

Example - Integrator

i=u () = -
S
Not BIBO stable, because pole is on the imaginary axis.
Response to the bounded step input u(t) = 1,¢ >0,y =t
2 2
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Example - Delayed First-Order System

675

Gls) = s+1

All the poles are in the left half plane - stable.

Nyquist Criterion

Output

9
Stability of Closed-Loop System Nyquist Criterion

Goal: Decide if closed-loop is stable by looking at open-loop Nyquist diagram
—O—| K(s:0) | —| G(s)

If Why?

- Simple test to know if a controller will be stable without computing the

Suppose we know G(s), and a parameterized version of our controller K (s; 0) closed-loop poles

) - We can shape the open-loop behaviour as desired by changing the controller
— For what values of 6 is the closed-loop stable? .
in K(s)G(s)
Example 1: PI - Simple design methods based on experimental data

1 - Determine robustness of the closed-loop system to uncertain model
K(s) =K, (T75 + 1) parameters: K,,T; parameters, noise, structure, etc

Example 2: Stabilizing controllers

- Optimize performance over all possible control laws subject to stability of
a(s)

K(s) = o) poles of K(s) in the LHP closed-loop system
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Closed-Loop Transfer Functions Closed-Loop Transfer Functions

H?H K(s) G(s) HT K(s) G(s)
Controller K and system H are rational functions of polynomials in s Controller K and system H are rational functions of polynomials in s
NI C) _ B(s) _ S(s) \_ B(s)
RO =R ¢ =46) K= R0 ¢ =46)
So the closed-loop system is:
Gals) = K(s)G(s) B(s)S(s)
YT IFK()G(s)  A(s)R(s) + B(s)S(s)
12 12
Stability of Closed-Loop System Stability of Closed-Loop System
Gals) = K(s)G(s) B(s)S(s) Guls) = K(s)G(s) B(s)S(s)
YT IFK()G(s)  A(s)R(s) + B(s)S(s) YT I¥K()G(s)  A(s)R(s) + B(s)S(s)
Closed-loop system is stable if and only if the roots of the characteristic Closed-loop system is stable if and only if the roots of the characteristic
polynomial are in the left half plane polynomial are in the left half plane
p(s) := A(s)R(s) + B(s)S(s) p(s) := A(s)R(s) + B(s)S(s)
True if and only if the zeros of 1 4 K (s)G(s) are in the left half plane (LHP) True if and only if the zeros of 1 4+ K (s)G(s) are in the left half plane (LHP)

S(s) Bls) _ A(S)R(s) + B(s)S(s)
R(s) A(s) A(s)R(s)

1+ K(s)G(s) =1+



W (s)
Guls) = _EBIGE) B(s)S(s) B . L
1+ K(5)G(s)  A(5)R(s) + B(s)S(s) Vo) JZT EON R IO ey -
- The closed-loop poles are totally different from the open-loop ones +Of Vi(s)

- The closed-loop system contains the open-loop zeros S(s) Transfer functions from all inputs to all outputs:

- All four basic transfer functions have the same poles

Y'(s) 1 G(s)K(s) G(s) 1 Ye(s)
G(s)K(s) 1 G(s) K(s) E(s)| = TTGOKG) 1 —G(s) -1 W(s)
1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s) 1+ G(s)K(s) U'(s) K(s) 1 —K(s)| | V(s)
Four basic transfer functions:
G(s)K(s) 1 G(s) K(s)
14+ G(s)K(s) 14+ G(s)K(s) 14+ G(s)K(s) 1+ G(s)K(s)

- Functions have the same poles or fundamental modes
- All depend on the open-loop transfer function G(s)K (s)
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Nyquist Criterion : The Idea Cauchy’s Argument Principle
What we want to know: Consider the function:
- Does 1+ K (s)G(s) have any zeros in the right-half plane? Hi(s) = (s =21)(s = 22)

o (s =p1)(s — p2)

The information we have: Evaluate H;i(s) at a point s, and write in polar notation

S S v pd01,. 502
- Aplot of K(s)G(s) for s = jw, i.e, on the imaginary axis Hi(s0) = Ebo Zl;géo 22)) = ’Zlem’”e?.m
. S0 — S0 — Tp, € Tp, €
(Note that this is a closed D-shaped contour around the RHP) 0~ Pt — P2 - bz

we see that the argument is additive
The trick from complex analysis: ZH(s0) = 61 + 02 — (¢1 + ¢2)

- The number of poles | zeros of 1+ K(S)G(S) outside the LHP is equal to the where 0;, oi is the ang[e from the ¢t" po[e/zero to the point So
number of times the curve 1 + K (jw)H (jw) encircles the origin

We can tell if the closed-loop system is stable by counting how many times the
nyquist plot of the open-loop system encircles the origin.



Cauchy’s Argument Principle Cauchy’s Argument Principle

Let the point so follow a smooth, closed, non-self-intersecting curve C Let the point s follow a smooth, closed, non-self-intersecting curve C

Case 1: No poles or zeros inside Cy Case 2: Pole inside C\

Im(s) Im[H,(5)] Im(s) Im{H()]

5o H,(s)
Hy(s)
0,

6 @ Ci 5 S

1 [ -0 @7 50 ) /

[ o A 3 LW

b, > Re(s) Re[H(s)] 7U Re(s) \ Re[H,(s)]
0, &

ZHi(s) =a =01+ 02— (¢1 + ¢2)

ZHy(s) = =01 4 02 — (¢1 + ¢2)

. . . - Integral of @ around C is —360°
- awill increase and decease as s changes, but integral of aw around C4 is zero $ @ !
- Implication: The curve {H1(s) | s € C1 } contains the origin

- Implication: The curve {Hi(s) | s € C1 } does not contain the origin
- (Note: A zero would cause an increase of 360°)

Cauchy’s Argument Principle Nyquist Plots and Cauchy’s Argument Principle

The question: Does 1 + K (s)G(s) have a zero in the right half plane?

- Take the contour to be a clockwise encirclement of lm(’?) ‘
, o - . ~~ tour at
Cauchy’s Argument Principle the right half plane S~ in%iﬁ;”
AN
A contour map of a complex function will encircle the origin Z — P times, where + Assume for now that K'(s)G(s) has no unstable poles AN
Z is the number of zeros and P is the number of poles of the function inside the - The Argument Principle tells us that 1 + K (s)G(s) has N ¢ \\
contour. a zero in the right half plane if the plot ] \\
1+ K(jw)G(jw) contains the origin /l Re(s)
- This is equivalent to saying that the Nyquist plot of c /#
K (s)G(s) does not contain the point —1 ]\//
How to use this for control? i




Nyquist Criteria Detail : Why can we plot only the imaginary axis?

We should plot the full D-contour, but we only plot the Im(s)
1. Plot the Nyquist plot of K(s)G(s) contour along the imaginary axis. Why? [ T~~ o Contour at
infinit
2. Evaluate the number of clockwise encirclements of —1, call this NV \\\m i
- Draw a straight line in any direction from —1 to oo \\
- Count the net number of left-to-right crossings of the straight line by K (s)G(s). AN 1 \
This is N \\
- Right-to-left crossing decrease N by one. N can be negative. & ®
| e(s
3. Determine the number of unstable poles of G(s), call this P c /#
4. Calculate the number of unstable closed-loop roots Z ]\/
‘(/
Z=N+P | -~

All physical systems have more poles than zeros (strictly proper). This is because
infinite frequency oscillations result in no motion (infinite acceleration is not
possible).

lim |G(jw)

w—r00

Nyquist criterion: The closed loop system is stable if and only if Z is zero.

=0 — Nyquist plot for the ‘D’ section is zero.

Note: G(—jw) = G(jw). The Nyquist plot is symmetric around the real axis.
22 23

Example G(s) = ——— ET]E

Im[G(s)] Stable
0.6 1 Z=N+P
0/t =0+0
=0
-2+
Re|G(s)]
t - t t t t t t t t - t t t t
-12 -1 —-0.8 —0.6 —0.4 —0.2 02 04 06 0.8 . 1.2 -1.2 -1 —-0.8 —0.6 —0.4 —0.2

—([r2
—o\t |
_06 1
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Example G(s) = -

+ Still stable?

Example

G(s) =

K(s)

<+ Still stable?

~1/K V27

Im([G(s)]

RelG(s)]

| ® 1 e :
-12 -1 —-0.8 —-0.6 —04 —0.2

—[r2

—ON |

—0.6 |

s+0.9
52 —0.95 + 0.6

Example G(s) =04

02 04 06 08 | 12

2%

K(s)=1

P |

1 08 —0.6 /0 —0.2

—0.8 +

25

Stable:
No positive value of
K will intersect the
Nyquist plot

_1/K

@ ;
-12 -1 —-0.8 —0.6

Example

G(s) =04

Unstable

Z=N+P
=0+2
=2

0.4 —0.2

s+ 0.9

52 —0.95 4+ 0.6

2%

K(s)=1

—

1 08 —0.6 /0 —0.2

—0.8
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Example

s+ 0.9

G(s) =04

K(s)=1

s+ 0.9
Example s

Example

s2 —0.9s + 0.6

0.8

—

{Im[G(s)]

! ! o
-1 —0.8 —0.6 /~0 —0.2

—0.8 1

s+ 0.9

G(s) = 04——"T "
(s) 52— 095+ 0.6

0.2

Stable for K %
4‘ Il Il -

1 08 —0.6 /0 —0.2

—0.8 +

25

25

52095+ 0.6

— e 1 1 o
-1 —0.8 —0.6 /~0d¢ —0.2

—0.8 +

25

Example

//\X Re[G(s)]
® : :
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Example G(s) = - (s Example

— 14
~1/K
Re[G(s)] / Re[G(s)]
= | | | |
2 X\_I_/ 1 2 2 1 1 2
1 —1
o 9

Example (5) = — ((s) = - Example

Unstable Im[G(s)] Im[G(s)]
1 2 1
Z=N+P
=0+1

=1

~1/K ’
Re[G(s)] Re[G(s)]
® (Y I I } @ T T
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Example G(s) = 7)

The Nyquist curve is unbounded as w — 0.
Does the curve enclose the RHP, or the LHP? 2

Impact of Integrators

‘Integrator’ Segment

— ol _ B(O) 7 —ijq m™ T
s=re’ KOGO) = fomaamy = ¢ " 0€153]

- v:= B(0)/A(0) is the steady-state gain
- The Nyquist plot will form a semi-circle with infinite radius
- If ¢ > 1, then we'll have multiple semi-circles

15 : : : : : : 15
1 1

0.5 0.5

Imaginary Axis
R

Imaginary Axis
R

=1 -05 0 0.5 1 1.5 2 25 =1 -05 0 0.5 1 1.5 2 25
Real Axis Real Axis
29

Impact of Integrators

Suppose our system has the form

B(s)
s1A(s)

Im(s)

K(s)G(s) =

What does the Nyquist plot look like?

N

Re(s)
Follow a curve that takes an infinitesimal
curve around the point s = 0.

28

Example

Im[G(s)]
©=0"

Arcat oo
<0 all from = 0

o=%1 D

Re[G(s)]

- 0 < K < 2: Zero crossings, zero unstable open-loop poles — Stable
cK>2N=2P=0—>272=2
cK<ON=1,P=0—>27Z=1

30



Example

Example
Im(s) Im[G(s)]
r— c
Im(G(s)]
w>0
C
=50 w=£\io
C
Re[G(s)] }B\ £ o -\
: ! A Re(s) -1 v/" \ Re[G(s)]
—2 —-1.5 0.5 Vs w=00
~1K,
©<0
Arc at 0o
all fromw=0
e
A
(b)r (a)

Stability depends on whether the infinite curve is clockwise or counterclockwise

31 32

Example G(s) = 7 Example

Re[G(s)]
0.5

Re[G(s)]
0.5

—11

Stable for K > 1
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Simplified Nyquist Criterion

If all the poles of the system are stable, then there is a simpler condition.

- No unstable open-loop poles —+ P =0

- Number of unstable closed-loop poles Z = N, the number of encirclements

Simplified Nyquist Criterion

If the open-loop system is stable and the —1 point lies to the left of the Nyquist
curve, then the closed-loop system is stable.

Example

Example

®
-12 -1

Example

0.8 —0.6 —0.4 —0.2
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[ Tm[G(s)]

Re[G(s)]
0.5

36

{Im(G(s))
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8.88 - 108(s2 + 780s + 1.69 - 10)

G(s) =

(s + 3000)(s + 1000)(s + 100)(s2 + 50s + 6.25

Im[G(s)]
1.5

38

AFM - PI Control

8.88 - 10%(s® + 780s + 1.69 - 10°%) 2%
(54 3000)(s 4 1000)(s + 100)(s2 + 50s + 6.25 - 105)

K(s)=K (1 + Tls)

G(s) =

40

AFM - Step response

Close-loop step response

0.20

0.15 |-

0.10 |-

0.05 |-

0.0
8.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Steady-s

Time (s)

tate offset — need an integrator!

0.08 0.09 0.10 0.11

39

AFM - PI Control

G(s)

K(s)

8.88 - 10%(s® + 780s + 1.69 - 10°)

~ (5 +3000)(s + 1000)(s + 100)(s2 + 50s + 6.25 - 10°)

1
(14 7

Stable for K < 1.17

40



Step response with K = 0.5

1L Nyquist cirterion:  Simple method to determine if the closed-loop system will be
stable by looking at the open-loop Nyquist plot.
05 : Why?
- Can generate the open-loop Nyquist plot from system measurements without
doing any modeling
8_00 0.65 0.‘10 O.‘15 0.‘20 0.55 0.‘30 - Can easily define a range of stabilizing control gains

Time (s) - Tells us how close the system is to unstable - will use to define the notion of
robustness next week

41 42



